3/5x-2/5x-5(x+1)=15x+8

Simple and best practice solution for 3/5x-2/5x-5(x+1)=15x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5x-2/5x-5(x+1)=15x+8 equation:



3/5x-2/5x-5(x+1)=15x+8
We move all terms to the left:
3/5x-2/5x-5(x+1)-(15x+8)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We multiply parentheses
3/5x-2/5x-5x-(15x+8)-5=0
We get rid of parentheses
3/5x-2/5x-5x-15x-8-5=0
We multiply all the terms by the denominator
-5x*5x-15x*5x-8*5x-5*5x+3-2=0
We add all the numbers together, and all the variables
-5x*5x-15x*5x-8*5x-5*5x+1=0
Wy multiply elements
-25x^2-75x^2-40x-25x+1=0
We add all the numbers together, and all the variables
-100x^2-65x+1=0
a = -100; b = -65; c = +1;
Δ = b2-4ac
Δ = -652-4·(-100)·1
Δ = 4625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4625}=\sqrt{25*185}=\sqrt{25}*\sqrt{185}=5\sqrt{185}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-65)-5\sqrt{185}}{2*-100}=\frac{65-5\sqrt{185}}{-200} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-65)+5\sqrt{185}}{2*-100}=\frac{65+5\sqrt{185}}{-200} $

See similar equations:

| 25000+150x+3x^2=0 | | 9.3+x=21 | | r=7.9=7.1 | | 0=150+6x | | 3x^2=25000 | | 105+35+n=180 | | 1/8m÷2/5÷1/2m=3/8m÷3/4m | | 72+45+n=180 | | x/3-8=-5;9 | | 26=x5 | | 90+36+n=180 | | n6=13 | | -4.5x+7=0.25x^2+5x-3.4 | | x-4(x+3)=28 | | 4(x+5)=6(x+4 | | 9x+15=17x-15 | | 14x^2-28x-14=0 | | (x+6)(x-5)(x-18)=0 | | 12=6/5v | | 9x+13=17x+15 | | r-6=r+4 | | m5=11 | | 28=2x(6x-7) | | 3x-25=6x+10 | | 18=r3 | | 1+3x/7+3-x/3=32/21 | | 8(6x-1)=8(6x+7) | | 3/4(6m-2)=246 | | 6c-8-4c=-16-2c | | 4-(z+7)=8 | | 12(x+1)-6x=30 | | m/15=28/60 |

Equations solver categories