3/5x-4/3=1/2x-1

Simple and best practice solution for 3/5x-4/3=1/2x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/5x-4/3=1/2x-1 equation:



3/5x-4/3=1/2x-1
We move all terms to the left:
3/5x-4/3-(1/2x-1)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 2x-1)!=0
x∈R
We get rid of parentheses
3/5x-1/2x+1-4/3=0
We calculate fractions
(-80x^2)/90x^2+54x/90x^2+(-45x)/90x^2+1=0
We multiply all the terms by the denominator
(-80x^2)+54x+(-45x)+1*90x^2=0
Wy multiply elements
(-80x^2)+90x^2+54x+(-45x)=0
We get rid of parentheses
-80x^2+90x^2+54x-45x=0
We add all the numbers together, and all the variables
10x^2+9x=0
a = 10; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·10·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*10}=\frac{-18}{20} =-9/10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*10}=\frac{0}{20} =0 $

See similar equations:

| (2x+3)^-1=0 | | 15x=4x-x | | 0.875w=14 | | 0=y^2+3/4y+19 | | 185/y=25 | | -7-n=-20 | | 1.9=w-9.5 | | -7-n=-29 | | (2x-5)/3=-7 | | -0.25=2.37t-4.9t^2 | | (4+z)(3z+5)=0 | | 1.9=w+9.5 | | 40-8k=8(5-6k) | | 2/9(4x-1)=2/3x+1 | | -277=11a+20 | | w=9.5*1.9 | | -0.85t-0.85t-3.9=-8.15 | | 4x+15°=2x | | 6/4=2p=2/p-10 | | 16-6x=9x+1 | | 3b+7-1=-3 | | 9.5=w+1.9 | | 86=5/9x | | 3t+1/8=5+2t/7±2 | | -9+6x=8x-3 | | 4(5+n)=64 | | X-y/5=3 | | -9x+8=-109 | | 3x+1-6x=7 | | 3t+1/8=5+2t/7=2 | | 10n^2-9n-4=0 | | -5(-5+4a)=-23-8- |

Equations solver categories