3/7x-1=9/14x+3

Simple and best practice solution for 3/7x-1=9/14x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/7x-1=9/14x+3 equation:



3/7x-1=9/14x+3
We move all terms to the left:
3/7x-1-(9/14x+3)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 14x+3)!=0
x∈R
We get rid of parentheses
3/7x-9/14x-3-1=0
We calculate fractions
42x/98x^2+(-63x)/98x^2-3-1=0
We add all the numbers together, and all the variables
42x/98x^2+(-63x)/98x^2-4=0
We multiply all the terms by the denominator
42x+(-63x)-4*98x^2=0
Wy multiply elements
-392x^2+42x+(-63x)=0
We get rid of parentheses
-392x^2+42x-63x=0
We add all the numbers together, and all the variables
-392x^2-21x=0
a = -392; b = -21; c = 0;
Δ = b2-4ac
Δ = -212-4·(-392)·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{441}=21$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-21}{2*-392}=\frac{0}{-784} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+21}{2*-392}=\frac{42}{-784} =-3/56 $

See similar equations:

| 3x+5+7=x+7 | | (6y+12)=(8y+2) | | -6m+11=6m+7 | | 18y=11-34 | | 24-16x=12x | | w+11/3=6 | | 3x+7+6x-19=84 | | 145.5=11,64x | | 8x+2x=-7.4 | | y=-1+5/18 | | 2(2+3)=2x+16 | | 11-34=18y | | 4x-12/3x+21=-7 | | 320000*1,05^x=500000 | | -2x+16=58 | | f(4)=-3+5 | | 14v-5v=13.9 | | -2+3x=-8=24 | | 179+44h=45 | | x2+10x-3000=0 | | 10^2x+3=65 | | 2-16x^-3=0 | | 10x+1=33 | | -3t(5-t)=18 | | 7x-8=65 | | (X-1)/(2x-1)=4/5 | | 6x-4=77 | | X-1/(2x-1)=4/5 | | 3v=46 | | 10x+1=77 | | 15y^2-41y+14=0 | | 2x-3x-15=-2x+3x-21 |

Equations solver categories