If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/8n+5(n-6)=1+7/8n-2
We move all terms to the left:
3/8n+5(n-6)-(1+7/8n-2)=0
Domain of the equation: 8n!=0
n!=0/8
n!=0
n∈R
Domain of the equation: 8n-2)!=0We add all the numbers together, and all the variables
n∈R
3/8n+5(n-6)-(7/8n-1)=0
We multiply parentheses
3/8n+5n-(7/8n-1)-30=0
We get rid of parentheses
3/8n+5n-7/8n+1-30=0
We multiply all the terms by the denominator
5n*8n+1*8n-30*8n+3-7=0
We add all the numbers together, and all the variables
5n*8n+1*8n-30*8n-4=0
Wy multiply elements
40n^2+8n-240n-4=0
We add all the numbers together, and all the variables
40n^2-232n-4=0
a = 40; b = -232; c = -4;
Δ = b2-4ac
Δ = -2322-4·40·(-4)
Δ = 54464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{54464}=\sqrt{64*851}=\sqrt{64}*\sqrt{851}=8\sqrt{851}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-232)-8\sqrt{851}}{2*40}=\frac{232-8\sqrt{851}}{80} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-232)+8\sqrt{851}}{2*40}=\frac{232+8\sqrt{851}}{80} $
| 2s=1 | | 7d+9-5d=7d-6 | | 15.4=x−13.9 | | 7x+4=9×- | | -9g=5(-4+2g) | | 3-2(2m+1)=m+17 | | -8b-8=-7b | | 12n=42* | | 7x-3+2x=-3(-x-7) | | -4-6k=10k-8 | | 10+3f=-8-4f+5f | | 11/12x=121/132 | | 3(x+7)+66=180 | | 2(x+2)+112=180 | | a-25=36 | | -3t-8=-2t-1 | | 3x-14=x+40 | | 7=1/6(8x+24) | | 27=8–5x | | 11x-15+5x-13=180° | | -27=8x–5 | | 2-w=6w-5-8w | | 7={1}{6}(8x+24)61 (8x+24) | | -4z+5=z | | 8x(x-1)=〖7x〗^2+4x | | -4x-4=-84+4x | | 4k+8=3k+1 | | 2(2x1)=3x+7 | | 4.5k+5−1.5k=14 | | 4x–7=3(2x+5) | | 4d4-8d3-7d2-11d+6=0 | | 1/5x+1300=4/7x |