3/x=(x+5)/2

Simple and best practice solution for 3/x=(x+5)/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/x=(x+5)/2 equation:



3/x=(x+5)/2
We move all terms to the left:
3/x-((x+5)/2)=0
Domain of the equation: x!=0
x∈R
We calculate fractions
()/2x^2+(-((x+5)*x)/2x^2=0
We multiply all the terms by the denominator
(-((x+5)*x)+()=0
We calculate terms in parentheses: +(-((x+5)*x)+(), so:
-((x+5)*x)+(
We add all the numbers together, and all the variables
-((x+5)*x)
We calculate terms in parentheses: -((x+5)*x), so:
(x+5)*x
We multiply parentheses
x^2+5x
Back to the equation:
-(x^2+5x)
We get rid of parentheses
-x^2-5x
We add all the numbers together, and all the variables
-1x^2-5x
Back to the equation:
+(-1x^2-5x)
We get rid of parentheses
-1x^2-5x=0
a = -1; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·(-1)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*-1}=\frac{0}{-2} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*-1}=\frac{10}{-2} =-5 $

See similar equations:

| (2x+5)(2x-3)=3x-12 | | 5-5x=-30 | | (5/(x+3))-(2/(x+3))=0 | | (5/(x+3))-(2/x+3)=0 | | 30c=0.06 | | 932=x/6 | | x-9=130 | | 25+50x=325 | | X/2+4x/5=39 | | 3^(2x+2)+3^(x+2)=4 | | 2-2x-2=15-3x | | 3^(2x+2)+3^(x+2)=4 | | 14+3x=44 | | 4(7x+1)=3x+54 | | u/2-8=10 | | 4x^2-43x=105=0 | | 115=5w+15 | | 115=5w+5 | | -x^2-8=-33 | | 4(7x+1)=2x+54 | | 1=1-6y-7y | | 3t+(-16)=36 | | 1=1-6y/7y | | 200x+1x^2=55x+4200 | | 3(x+4)^2+6x=3x^2+7 | | k/4=-15+18 | | 4/9x=x/6+15 | | |x+1|=|3-2x| | | 15=-r/8 | | 3((x+4)2)+6x=(3x)2+7 | | 5b-2=b-17 | | 25+75x=775 |

Equations solver categories