If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/x=2(10x+10)/6(2*50)
We move all terms to the left:
3/x-(2(10x+10)/6(2*50))=0
Domain of the equation: x!=0We add all the numbers together, and all the variables
x∈R
3/x-(2(10x+10)/6100)=0
We calculate fractions
()/6100x^2+(-(2(10x+10)*x)/6100x^2=0
We multiply all the terms by the denominator
(-(2(10x+10)*x)+()=0
We calculate terms in parentheses: +(-(2(10x+10)*x)+(), so:We get rid of parentheses
-(2(10x+10)*x)+(
We add all the numbers together, and all the variables
-(2(10x+10)*x)
We calculate terms in parentheses: -(2(10x+10)*x), so:We get rid of parentheses
2(10x+10)*x
We multiply parentheses
20x^2+20x
Back to the equation:
-(20x^2+20x)
-20x^2-20x
Back to the equation:
+(-20x^2-20x)
-20x^2-20x=0
a = -20; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·(-20)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*-20}=\frac{0}{-40} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*-20}=\frac{40}{-40} =-1 $
| 15(1/3x-8=12(2-x) | | 2v+12=7(v+1) | | 7=7(w-4) | | 3x/7-10=26 | | w2=9(w−8) | | (x+3)2−4=0 | | -6(x+3)=-8x-32 | | 35=8+3m | | 3(y-2)-9=3y-12 | | 15-2x=20+4x | | 3(w-4)=-15 | | -6v+3(v+7)=33 | | 2(3-x=3(1-x | | 0,66x+x=148 | | 7(4w+4)=2 | | 39w-4)=-15 | | -16t^2+1,600=0 | | x+1/3x=148 | | 5+3x2=30 | | -7y+5(y-4)=-34 | | 9(b+6)=63 | | 2(u+8)-6u=12 | | -20=5u+6-12u | | 3-4(x+7)=3(1-x) | | 3x+10=400/x | | 2(k-1)=-20 | | 30/n-7n+12=-7-18 | | f(5)-f(-1)=12 | | 5x+(x+54)=90 | | 2+(5x-15)=12 | | (3-x)(70x^2+109x+42)=0 | | 1(7-2x=6(x-5 |