If it's not what You are looking for type in the equation solver your own equation and let us solve it.
300=4.9t^2
We move all terms to the left:
300-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+300=0
a = -4.9; b = 0; c = +300;
Δ = b2-4ac
Δ = 02-4·(-4.9)·300
Δ = 5880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5880}=\sqrt{196*30}=\sqrt{196}*\sqrt{30}=14\sqrt{30}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{30}}{2*-4.9}=\frac{0-14\sqrt{30}}{-9.8} =-\frac{14\sqrt{30}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{30}}{2*-4.9}=\frac{0+14\sqrt{30}}{-9.8} =\frac{14\sqrt{30}}{-9.8} $
| 3x–8=x–11 | | 100-5p=100 | | d=300 | | 8y-2y+3=6 | | -5x+7-6(x-1)=-6x-(4x-6)+6 | | 3x+2+4x+3÷2=13 | | 10(f−92)=60 | | 1(7/8y=4(1/2 | | 5a^2-23a=-12 | | -2x/3=24 | | 2+3(c)=20 | | 10x^2-240=0 | | 28=4(v+2) | | f/9+48=56 | | -10x^2+(x^2+3)^2=9 | | 7u+2=72 | | -x+47=6x-2 | | h/6+14=18 | | 0.4h+2=6 | | 5(q+4)=70 | | 3x+2+4x+3=360 | | u+31/6=7 | | 3y-4=12y+50 | | x2+2x-82=0 | | 99=9(s+2) | | Y=2z-3 | | Y13x=85 | | 2/3-1/6=1/6m-2/3 | | -13=2-b+10 | | 2x+5(-3)=3 | | s^-2(s+1)=0 | | 81^q=243 |