30625+8064=c*c

Simple and best practice solution for 30625+8064=c*c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 30625+8064=c*c equation:



30625+8064=c*c
We move all terms to the left:
30625+8064-(c*c)=0
We add all the numbers together, and all the variables
-(+c*c)+30625+8064=0
We add all the numbers together, and all the variables
-(+c*c)+38689=0
We get rid of parentheses
-c*c+38689=0
Wy multiply elements
-1c^2+38689=0
a = -1; b = 0; c = +38689;
Δ = b2-4ac
Δ = 02-4·(-1)·38689
Δ = 154756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{154756}=\sqrt{4*38689}=\sqrt{4}*\sqrt{38689}=2\sqrt{38689}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{38689}}{2*-1}=\frac{0-2\sqrt{38689}}{-2} =-\frac{2\sqrt{38689}}{-2} =-\frac{\sqrt{38689}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{38689}}{2*-1}=\frac{0+2\sqrt{38689}}{-2} =\frac{2\sqrt{38689}}{-2} =\frac{\sqrt{38689}}{-1} $

See similar equations:

| Y+15.95=x | | 6t+3=24 | | x/50=90 | | 7y=+0 | | 1600+1764=c*c | | 2x-9=15+3x | | J+3=j | | 24+4(3-x)-2x-3(4x-2)-8=4-6(x-5)-36 | | 0,2(10−5c)=5c−16 | | 1225+144=c*c | | (4x^2-2)(2x^2-3)=0 | | 9y-y^2=5 | | 10b=9b-4 | | 6t-7=3t+11 | | h+18=-12 | | 5x+35=4x+5 | | 35-u3=4u | | 7h/8-2=819/32 | | 2x-4(x-4)=-5+3x+6 | | 5y+45=10y | | x-5=2(x-6) | | 2.3^2x^-1=54 | | 0+k+2k+2k+3k+k^2+2k^2+7k^2k=1 | | 9x-0.2=-4x+5.8 | | 2.3^2x-1=54 | | 4x^2+8x-9=-3x^2 | | 6.5x+10=2.5x+30 | | 2(3y+4)=5-3y | | 6-2x=5x-9x=4 | | (-x/2)+(x/3)=1 | | 4x^2+8x-9=-2x^2 | | k^2+3k+56=0 |

Equations solver categories