If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30q^2+38q-16=0
a = 30; b = 38; c = -16;
Δ = b2-4ac
Δ = 382-4·30·(-16)
Δ = 3364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3364}=58$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-58}{2*30}=\frac{-96}{60} =-1+3/5 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+58}{2*30}=\frac{20}{60} =1/3 $
| 5(m-1)=2m-8 | | 8a^+6a=-5 | | 6x+9=-61-6x | | 21−3z=12 | | 6x-4,x=10 | | n5=3 | | −8=16-2n=−8 | | 4xx+5=100 | | 30q2+38-16=0 | | 4–5x=2x–10 | | 0.18b=4.50 | | Y.C=4(Y-k) | | 4x+7/2-5x-1/6=x+5 | | 32x+20=2(x-16) | | n+45/6=23 | | 86=7/m+77 | | 4+n/15=1 | | 4x+7,x=3 | | 34-3x=10-3x | | 3w+16=8w+26 | | 40=5(x+4) | | 11a,a=5 | | 86=m/7+ 77 | | 6x-3=-75 | | $4(x+20)=x-20+2x+40$$ | | h(8)=5-9(8) | | 1/5c-13=23 | | 7v+2=2v+12 | | X+1+2x-x=x | | x/5+11=17 | | -1=-112+b | | X²+1+2x-x²=x |