If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2-131x-18=0
a = 30; b = -131; c = -18;
Δ = b2-4ac
Δ = -1312-4·30·(-18)
Δ = 19321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19321}=139$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-131)-139}{2*30}=\frac{-8}{60} =-2/15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-131)+139}{2*30}=\frac{270}{60} =4+1/2 $
| 7m+3m=5m+11 | | 6x+11=-39x-4x | | 6x+18=13x-27 | | X+x÷2+1=100 | | 32+y=27 | | 99-10x=70 | | 9.5x-5x=28 | | 13.8x+11.2x=50.5 | | 4x-2.4=x+3.6 | | 3x-2=12. | | 5x+9-4=12-x-1 | | 3(4p+6=66 | | 14-4x=3(x-7) | | 4÷2x=64^x | | 11w+6=9w+10 | | 3x-5+x+21=180° | | 7(4n+2)+5=75 | | 2(2c-9)=-2 | | b(-18-b)=-24 | | 3(5w+20)=105 | | 12-3x+4=5x-2 | | 6x^2−7x−3=0 | | (5x+25)÷8=45 | | x+34=3(x+6) | | X^2+(18-x)^2=180 | | 10x^2+22=22 | | k4−85⋅k2+324=0. | | 1/5x+x2=0 | | 1.2x2=4.2x | | 4.2-x2=0 | | -7x+3=-8x+6 | | 14x-5(5-8x)= |