If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2-80x=0
a = 30; b = -80; c = 0;
Δ = b2-4ac
Δ = -802-4·30·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-80}{2*30}=\frac{0}{60} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+80}{2*30}=\frac{160}{60} =2+2/3 $
| 6-6x-10=-8 | | 5x5-3=22 | | 1.8x=4.14 | | s*7+27=207 | | 25^(2)=125^(x+1) | | −100x2+160x−64=0 | | 0.07x=0.2632A. | | 6x+2+4x+13+14x-13=180 | | -2(3g+11)=3(2g-1)-11 | | 35+35=x55+30=x | | 3500+x(175.75)=3505 | | 14(5x+2)=2x-1(11) | | 10+8v-3v=18-3v1 | | 12=-13x | | 11.4=6p | | (2/7)x=6/11 | | x=0.01x500 | | 6=n-5 | | (3x+33)/3=51 | | 4t–3=2t+7 | | 2=-8x-14 | | 7=v/13.4 | | x+12=8x+5 | | 5+9t=+3 | | 1/2y-4=8 | | 7=v13.4 | | 5a–3=2a+6 | | g÷4−1=2 | | 6x-9=3(3+x) | | (3x-5)+7x+5=180 | | -(6x+)=4(17-x) | | Rx10=40 |