If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30y^2+29y-7=0
a = 30; b = 29; c = -7;
Δ = b2-4ac
Δ = 292-4·30·(-7)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-41}{2*30}=\frac{-70}{60} =-1+1/6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+41}{2*30}=\frac{12}{60} =1/5 $
| 10(2x-5)=12 | | 9v-6v-v-v=20 | | 7x+(-3x)=12 | | 6t-8=49 | | 7x=99 | | 2y-13.8=12 | | -24+4m=3m-2(m+6) | | 49=6t-8 | | 130=13n | | y2-6y=6 | | x/4=8/13 | | 50=-2n+10 | | 9(3x+8-3(4x+21)=0 | | 5r2-r+4=0 | | 15(7x-8)-2x=-2 | | 6y+4=y^2 | | y2=6y+4 | | 35x-9=35x+28 | | 3(y+3)-2(y-4)=17 | | 16j-10j=12 | | 2m-5=17÷23 | | 36-4(5x-7)+11x=0 | | 20x-8x+2x-x-11x=18 | | W/8=y/12 | | (4^x)=(25) | | 4r-2r-r=5 | | 5/4y-60=-15 | | 4^x=25 | | 16-(1-5x)-4x-29=0 | | 6(-1-6x)=-438 | | -10k-17k+16k+-2=9 | | 13z-9z=16 |