31/2w+8=31/4w+10

Simple and best practice solution for 31/2w+8=31/4w+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 31/2w+8=31/4w+10 equation:



31/2w+8=31/4w+10
We move all terms to the left:
31/2w+8-(31/4w+10)=0
Domain of the equation: 2w!=0
w!=0/2
w!=0
w∈R
Domain of the equation: 4w+10)!=0
w∈R
We get rid of parentheses
31/2w-31/4w-10+8=0
We calculate fractions
124w/8w^2+(-62w)/8w^2-10+8=0
We add all the numbers together, and all the variables
124w/8w^2+(-62w)/8w^2-2=0
We multiply all the terms by the denominator
124w+(-62w)-2*8w^2=0
Wy multiply elements
-16w^2+124w+(-62w)=0
We get rid of parentheses
-16w^2+124w-62w=0
We add all the numbers together, and all the variables
-16w^2+62w=0
a = -16; b = 62; c = 0;
Δ = b2-4ac
Δ = 622-4·(-16)·0
Δ = 3844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3844}=62$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-62}{2*-16}=\frac{-124}{-32} =3+7/8 $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+62}{2*-16}=\frac{0}{-32} =0 $

See similar equations:

| 9(-5n-5)-4=41 | | -13y-5y−-15y=6 | | -1/4b=-22 | | -8-7(-x-3)=-57 | | 10x=4=5x=5 | | 64+6x=10(16+x) | | 2.5-0.04k=-0.98 | | Y=x-12/x+6 | | -3+8(2a-9)=37 | | -13y−5y−-15y=6 | | 8x+2x+9=14x-7 | | t/7+36=46 | | 5/y=1.88 | | 6x+3=11x-17 | | m+3=-3+2m | | 3/y=1.88 | | n/4=5n/8=1/4 | | m3=-3+2m | | 3x+7=5x+37 | | 4(x+4)=2(2x+4)+81 | | 5.6x+1.2=3.8x-3.3 | | 76=3k-(-10) | | m+3=-3+2 | | 3y+3y+6+5=22 | | -40=-10(k-90) | | -2x2+4x+30=0 | | 11y−7y=12 | | -2x-4x=16-4x | | -2x+4x+30=0 | | 2x−15=−3 | | 7g−-16=37 | | -6m+5=4m-9-8m |

Equations solver categories