310=2q+15+250/q

Simple and best practice solution for 310=2q+15+250/q equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 310=2q+15+250/q equation:



310=2q+15+250/q
We move all terms to the left:
310-(2q+15+250/q)=0
Domain of the equation: q)!=0
q!=0/1
q!=0
q∈R
We add all the numbers together, and all the variables
-(2q+250/q+15)+310=0
We get rid of parentheses
-2q-250/q-15+310=0
We multiply all the terms by the denominator
-2q*q-15*q+310*q-250=0
We add all the numbers together, and all the variables
295q-2q*q-250=0
Wy multiply elements
-2q^2+295q-250=0
a = -2; b = 295; c = -250;
Δ = b2-4ac
Δ = 2952-4·(-2)·(-250)
Δ = 85025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{85025}=\sqrt{25*3401}=\sqrt{25}*\sqrt{3401}=5\sqrt{3401}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(295)-5\sqrt{3401}}{2*-2}=\frac{-295-5\sqrt{3401}}{-4} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(295)+5\sqrt{3401}}{2*-2}=\frac{-295+5\sqrt{3401}}{-4} $

See similar equations:

| 1=m/2=-8 | | 2+6g=11-3* | | 9x+5=27^2x;x= | | 11/10+x=2/5 | | -2g+15=10+4g-1 | | 7f=5+5f | | 8x=-2(6x+15) | | 3y-12=15× | | 49-5x=34-2x | | 30=6-4k | | 4x-3-3x=12(2x | | y2+ 8= 9 | | 3/e=​4​​3​​ | | 10(-2g-2=2(6g+22) | | 8.1=3.8h-5.65=-7.2 | | -18=-12a | | 3c+1=c+13 | | 3(x+8)=5(x-7) | | 550=0.25h+2.00 | | x^2+3x+2/x^2+7x+12=1 | | 6(x+4)=3x+3 | | 6b+15=19+4b | | 3m-10=2(m-5) | | t+15t=0 | | -9=x=-26 | | 0.4(p+2)=0.2(p+7) | | 560x=1400 | | 2x-(4x+3)=4(2x-5)+7 | | t+15t=16t | | 6x+12=-9x-19 | | 3(2x-5)+4(x-2)=7 | | 18x-6+96=540 |

Equations solver categories