If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32+90+m2=180
We move all terms to the left:
32+90+m2-(180)=0
We add all the numbers together, and all the variables
m^2-58=0
a = 1; b = 0; c = -58;
Δ = b2-4ac
Δ = 02-4·1·(-58)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{58}}{2*1}=\frac{0-2\sqrt{58}}{2} =-\frac{2\sqrt{58}}{2} =-\sqrt{58} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{58}}{2*1}=\frac{0+2\sqrt{58}}{2} =\frac{2\sqrt{58}}{2} =\sqrt{58} $
| 5n–4n=11 | | 2x+5=6x+33= | | -168y=168,000 | | 3(2x-4)=2(-x+2) | | 30+90+m1=180 | | x=1/4x=15 | | 2n+3n+7=-43+5 | | 3/5x1/6x-26=13 | | 125/g=5 | | 6x+20=5x+10 | | s+7/27;s=7/9 | | 35+90+m1=180 | | 9x+4+8x-4+4x+17=374 | | 2+2-1-y=4 | | 5=g | | 6u=14+4u | | 5u^2-8u=4 | | 12=-4(-6x)=9 | | 6u=14+4 | | 20+6x=10+6x | | 20+4x=x+11 | | 2.4(7x+4.8)=16x | | 2x+3x-5=10 | | 6x+20=6x+10 | | 11.97+v=5v-0.11 | | 5x³+21²+4x=0 | | x/5=2/15 | | 3a-4=5a+4 | | j−5=3.4 | | -2()t-4)=10-2t | | x2+2x+8=0 | | 3(x+4)=5(x-1) |