3200=(200-x)x-(2800+45x)

Simple and best practice solution for 3200=(200-x)x-(2800+45x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3200=(200-x)x-(2800+45x) equation:



3200=(200-x)x-(2800+45x)
We move all terms to the left:
3200-((200-x)x-(2800+45x))=0
We add all the numbers together, and all the variables
-((-1x+200)x-(45x+2800))+3200=0
We calculate terms in parentheses: -((-1x+200)x-(45x+2800)), so:
(-1x+200)x-(45x+2800)
We multiply parentheses
-1x^2+200x-(45x+2800)
We get rid of parentheses
-1x^2+200x-45x-2800
We add all the numbers together, and all the variables
-1x^2+155x-2800
Back to the equation:
-(-1x^2+155x-2800)
We get rid of parentheses
1x^2-155x+2800+3200=0
We add all the numbers together, and all the variables
x^2-155x+6000=0
a = 1; b = -155; c = +6000;
Δ = b2-4ac
Δ = -1552-4·1·6000
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-155)-5}{2*1}=\frac{150}{2} =75 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-155)+5}{2*1}=\frac{160}{2} =80 $

See similar equations:

| n/10+5=4 | | 8x2+40x=238 | | 4z/9+3=1 | | −5x−4x−2=−8x+2 | | 5a+5-2a-8=12 | | −5x−4x−2=−8x+2-5⁢x-4⁢x-2=-8⁢x+2 | | 5x–17=6 | | -x+3x+1+4(x+2)=54 | | 3x-28=23 | | 3(x-2)+x=x-2 | | (5n+6)-(3+4n)=10 | | 3(x-2)+x=4x-3 | | x=(6x-9) | | 3(x-2)+x=2(2x-3) | | 3(x-2)+x=2-x | | F(-4)=6x^2-2x-3 | | 2(x-3)+4=x+3 | | 5-3y+9-y-4y-7+4+3y=0 | | ((x+5-3)*4)/9=4 | | z/8+4=10 | | y-5=10y= | | 3z/7+9=-4 | | ?x7=63 | | 4x-12=288 | | 6x+68=14x+28 | | 27(2x-3)=81(4-x) | | x/7+5=5 | | 7(t–1)=3t–5+2t | | (18n-18)/(2n-2)=0 | | 3n-12=27 | | 6^x=7^x^2 | | -5x+1/9=5/6x |

Equations solver categories