If it's not what You are looking for type in the equation solver your own equation and let us solve it.
320=140+(20-2x)(16-2x)
We move all terms to the left:
320-(140+(20-2x)(16-2x))=0
We add all the numbers together, and all the variables
-(140+(-2x+20)(-2x+16))+320=0
We multiply parentheses ..
-(140+(+4x^2-32x-40x+320))+320=0
We calculate terms in parentheses: -(140+(+4x^2-32x-40x+320)), so:We get rid of parentheses
140+(+4x^2-32x-40x+320)
determiningTheFunctionDomain (+4x^2-32x-40x+320)+140
We get rid of parentheses
4x^2-32x-40x+320+140
We add all the numbers together, and all the variables
4x^2-72x+460
Back to the equation:
-(4x^2-72x+460)
-4x^2+72x-460+320=0
We add all the numbers together, and all the variables
-4x^2+72x-140=0
a = -4; b = 72; c = -140;
Δ = b2-4ac
Δ = 722-4·(-4)·(-140)
Δ = 2944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2944}=\sqrt{64*46}=\sqrt{64}*\sqrt{46}=8\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-8\sqrt{46}}{2*-4}=\frac{-72-8\sqrt{46}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+8\sqrt{46}}{2*-4}=\frac{-72+8\sqrt{46}}{-8} $
| 3y/3y+9+5y−11/2y+6=7y+5/y+3 | | 8x-60+4x+20=180 | | 27=v+ | | 130=y(0.6) | | 50=y(0.6) | | t+.95=1.25 | | 45=y(0.6) | | 14x+2=3x+8+11x | | 12x-6=(18x+11) | | v+2/3=1/5 | | 150=y(0.6) | | 120=y(0.6) | | 8/3=-2x^2(x+1) | | 7g^2–2g–10=0 | | 8x+17=6x | | 4(-4t^2+t+60)=0 | | t=-16t^2+12 | | 20=y(0.6) | | t=-16t^2 | | 6x-12+x+18=90 | | e/7+5=-5 | | 16t(-t+4)=0 | | C=5/9x(98.6-32) | | x-2=5+3 | | 36+x+x+x=90 | | 3x^2+x=-2x-7 | | 2x-1+5x+8=180 | | x-2=5-3 | | 141+30+x=180 | | 4x=10x-182 | | 25^x=125^x-1 | | 2/1x-1/2=8 |