If it's not what You are looking for type in the equation solver your own equation and let us solve it.
324-4x^2=0
a = -4; b = 0; c = +324;
Δ = b2-4ac
Δ = 02-4·(-4)·324
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*-4}=\frac{-72}{-8} =+9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*-4}=\frac{72}{-8} =-9 $
| 40+14j=4(-4j-13) | | -2n-5n=-2n | | 15=6-3z | | 1/9y+6=-15 | | 0.3(40)+0.25X=0.2(40)+0.3x | | 9+4b=6b-3 | | 15k=-14k+13 | | 0.3(2x+8)=0.6(x+4) | | 1/5(30x+10)-19=-1/4(8x-20) | | 8+2x+20=x+19 | | e-7=|-12| | | x/4+6=3 | | 2-p=4p+2 | | 5(4x–6)=5x+6 | | x+x/4+x/4=180 | | 7v^2-57v+56=0 | | 8x+2x=9x-9 | | 8-4v=2-5v | | 1/3x+1/2=3(5/6x+4) | | 0=x^2-2x+1/2 | | 12+22+x=-10 | | 30=5(2x+3) | | -2r-7=-31 | | x/10-9=3/20 | | 2(n-6)=16+6n | | -10k-6=44 | | 2+k=k+2 | | a÷7=10 | | 2b+10=-22 | | (5x^2+1)(x+3)=-2(5x+1) | | 2(q-3)-2=4 | | 7e-5e=54 |