326+(14+2x)(24+2x)=816

Simple and best practice solution for 326+(14+2x)(24+2x)=816 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 326+(14+2x)(24+2x)=816 equation:



326+(14+2x)(24+2x)=816
We move all terms to the left:
326+(14+2x)(24+2x)-(816)=0
We add all the numbers together, and all the variables
(2x+14)(2x+24)+326-816=0
We add all the numbers together, and all the variables
(2x+14)(2x+24)-490=0
We multiply parentheses ..
(+4x^2+48x+28x+336)-490=0
We get rid of parentheses
4x^2+48x+28x+336-490=0
We add all the numbers together, and all the variables
4x^2+76x-154=0
a = 4; b = 76; c = -154;
Δ = b2-4ac
Δ = 762-4·4·(-154)
Δ = 8240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8240}=\sqrt{16*515}=\sqrt{16}*\sqrt{515}=4\sqrt{515}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-4\sqrt{515}}{2*4}=\frac{-76-4\sqrt{515}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+4\sqrt{515}}{2*4}=\frac{-76+4\sqrt{515}}{8} $

See similar equations:

| (-14z)-28z+(-27z)-(-35z)=-34 | | 200m-150m+43,200=45,225-150m | | (14+2x)(24+2x)=x | | -1-q=-6q+6q=18 | | 4n-1=6n+8-7+15 | | 3m-1+m+6=9-2 | | x/46.3=0.7 | | 2b+6-b= | | 3×-7=6x-8 | | 7(x-12)=-21* | | (0.1^2+0.7x+1=0)(10) | | -10v^2-41v-4=0 | | 6s-2s-3s+s+s-2=19 | | 2v-1=-v-6 | | 3x-4+x+16+12.7=180 | | (-22x-5x)+12+2x=15-(13x+2x)+7 | | 20n+2n+n-21n=6 | | 10p^2+32p+6=0 | | 3x-4+x+16=12.7 | | 11+w=19 | | 10-6r=-6r-10-5r | | 8k^2-10k-18=0 | | 3+3/4x=12 | | 11x+2=10x+5 | | 5|6y-1|9y=-102 | | -10+3x=6-5x | | (6x+16)+40=12x+2 | | 1.17^x=4 | | 1.5/2.5=w/1.5 | | 6x+18+x=180 | | -14x+3=-10x-1 | | 6w^2+30w+24=0 |

Equations solver categories