If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32=7h^2=
We move all terms to the left:
32-(7h^2)=0
a = -7; b = 0; c = +32;
Δ = b2-4ac
Δ = 02-4·(-7)·32
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{14}}{2*-7}=\frac{0-8\sqrt{14}}{-14} =-\frac{8\sqrt{14}}{-14} =-\frac{4\sqrt{14}}{-7} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{14}}{2*-7}=\frac{0+8\sqrt{14}}{-14} =\frac{8\sqrt{14}}{-14} =\frac{4\sqrt{14}}{-7} $
| 4/3m+1=5 | | 3a+1=4a | | −11m+4+6m=−21 | | 3(2x+5)-(5x-2=42 | | (12x)=(2x) | | 8x+32x-7=10(4x+8) | | 3x+11-5x=25 | | -2(5v-6)+5v=4(v+6) | | 3/8d-15=-18 | | 9+j=25 | | 100x-2x^2=1200 | | 4=w-7/3 | | -5x+25=50 | | 2.4x+6=48 | | x/3=20/5 | | 3z−6=6 | | c/3+21=17 | | 310x=165 | | 5x+3x-7=2(4x+7) | | -9r+-15r+-14=10 | | -4x+52=-2(1-7x) | | 2(3x+12=4x+76 | | −13=6a−11 | | 2y-9=3y-4 | | 2y+10=3y+20 | | 14.74+0.12=2x | | –17=c+37 | | -10x4=-84 | | 2(x+5)+8=4(7-2x) | | 4(4x+6)=2(x-1) | | -2(z-4)=-6 | | m−48=–11 |