If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x^2-32x+1=0
a = 32; b = -32; c = +1;
Δ = b2-4ac
Δ = -322-4·32·1
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{14}}{2*32}=\frac{32-8\sqrt{14}}{64} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{14}}{2*32}=\frac{32+8\sqrt{14}}{64} $
| X+18=18-x | | 0.15x+0.1(250-x)=25 | | 4/12=x/60 | | X^2+7x+14=180 | | 2x+4=-x+28 | | Y2x+4=-x+28 | | 36n2+28n-4000=0 | | 10w-4w=12 | | (3x+10)=6x-20) | | -8x^2+40x+15=0 | | 4x=0.4738 | | 3-5(x+2)=3(5x-3)+5 | | 10x+3=7x-2 | | 7v-3v=16 | | 6w-2w=20w | | 4y+2y=12y | | 6(x)=5^2 | | 14x-6x=64 | | 3/4+2(x-3/6)=3x-4/10 | | -6x+3=2x-5 | | x-4=4x+14÷6 | | 7xx3x= | | 2x+-4=-8 | | 48+(2x+18)=180 | | 4/7d-45=d-9 | | 5x=66666655555 | | ((A-250)x5)=1355 | | -x+10=x-6 | | 7(2x+5)=4x-9-x= | | (A-700)x7-1057=0 | | x+x-x/2=6 | | 2x+2x+x=15 |