33(33)=(2x-12)(2x+10)

Simple and best practice solution for 33(33)=(2x-12)(2x+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 33(33)=(2x-12)(2x+10) equation:



33(33)=(2x-12)(2x+10)
We move all terms to the left:
33(33)-((2x-12)(2x+10))=0
We multiply parentheses ..
-((+4x^2+20x-24x-120))+3333=0
We calculate terms in parentheses: -((+4x^2+20x-24x-120)), so:
(+4x^2+20x-24x-120)
We get rid of parentheses
4x^2+20x-24x-120
We add all the numbers together, and all the variables
4x^2-4x-120
Back to the equation:
-(4x^2-4x-120)
We get rid of parentheses
-4x^2+4x+120+3333=0
We add all the numbers together, and all the variables
-4x^2+4x+3453=0
a = -4; b = 4; c = +3453;
Δ = b2-4ac
Δ = 42-4·(-4)·3453
Δ = 55264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{55264}=\sqrt{16*3454}=\sqrt{16}*\sqrt{3454}=4\sqrt{3454}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{3454}}{2*-4}=\frac{-4-4\sqrt{3454}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{3454}}{2*-4}=\frac{-4+4\sqrt{3454}}{-8} $

See similar equations:

| 56=8-16x | | -7x+3=-6x-36 | | x15-21=12x | | 3x-8=2x+14 | | -12x+2x-8=22 | | 5x-1=3x-8 | | −2(x+1)+3x= | | 6(z+3)-18(5+z)=3(3z+4) | | 7=g-22/6 | | S=25t-2.5t^2 | | 3x+1/5=2/3 | | -42-6n=−30 | | 40=(2+5)-((y*0.1)+(((y*0.115)+y)*0.029+0.3) | | 13z=84 | | 7(h-82)=28 | | 9x+10=5x=2 | | 176=(x)(2)(x+3) | | x+.07x=5000 | | 35y+1=-6 | | 4y+6(5-2×)=6 | | x/15-14=22 | | 12+d/10=29 | | 20–3x=11 | | -86-x=45 | | 11+9a=47 | | -86+-1x=45 | | (x+5)^4+(x+6)^2=(x+5)^2+(x+6)^4 | | 16-2b=2b | | 2(-2x-11)=7x | | 2x+2=5-4x | | 6x+30-30=120-30 | | 4x=13=6-x |

Equations solver categories