33/2+3/5y=7/10y+15

Simple and best practice solution for 33/2+3/5y=7/10y+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 33/2+3/5y=7/10y+15 equation:



33/2+3/5y=7/10y+15
We move all terms to the left:
33/2+3/5y-(7/10y+15)=0
Domain of the equation: 5y!=0
y!=0/5
y!=0
y∈R
Domain of the equation: 10y+15)!=0
y∈R
We get rid of parentheses
3/5y-7/10y-15+33/2=0
We calculate fractions
1650y^2/200y^2+120y/200y^2+(-140y)/200y^2-15=0
We multiply all the terms by the denominator
1650y^2+120y+(-140y)-15*200y^2=0
Wy multiply elements
1650y^2-3000y^2+120y+(-140y)=0
We get rid of parentheses
1650y^2-3000y^2+120y-140y=0
We add all the numbers together, and all the variables
-1350y^2-20y=0
a = -1350; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·(-1350)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*-1350}=\frac{0}{-2700} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*-1350}=\frac{40}{-2700} =-2/135 $

See similar equations:

| -7(x+1)+8(x+7)=2 | | 5=2k=7 | | X3+7x-5=0 | | 426=6.88x-199 | | x*6=84 | | 16/8=20/x | | 2=2w-6 | | 30=7.5d | | 6x-7=7x-10 | | (18x-6)=(14x-8) | | x+37=76 | | x/2+3/4=7 | | x/32=18/x | | -17x-14=-48 | | 6x+1-x=4+4x+6 | | 9x-2=2×+12 | | 2x-37=115 | | Y=x=84 | | 9x-2=2×× | | 1+2b=3 | | (3x-4)+4x=2(7x-4) | | 5(x-3)+x-9=6(x-1)+x | | (45+y)/(-15)=-3 | | 5x+100=900÷3 | | x^2-8((121.5-2x^2)/8)=121.5 | | x/8+7=-7 | | 1+2x-6(x+1)=4x-5 | | 16b+192=14b | | 3k^2+9k+4=0 | | 6.1x-9.5=27.1 | | 3c/4=2c+3c | | 9(x-3)+5x=10x-29+2(2x+1) |

Equations solver categories