If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33k^2+112k-33=0
a = 33; b = 112; c = -33;
Δ = b2-4ac
Δ = 1122-4·33·(-33)
Δ = 16900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16900}=130$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(112)-130}{2*33}=\frac{-242}{66} =-3+2/3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(112)+130}{2*33}=\frac{18}{66} =3/11 $
| -7(3x+9)=-36 | | (A-5)(a-2)-28=0 | | 3(x+5)+16=2(x+3) | | (5x)+(9x-22)=180 | | -3(2x+6)=-42 | | 25v2-20v+4=0 | | 5x2+58x+80=0 | | 112-90=x | | 2(3x+9=36 | | m2-6m-72=0 | | 14w−w−9w=20 | | 2Dx6=36 | | v2-31v+30=0 | | 2(-1+1)+6=20-3x | | 71e+28=8e+7(4+9e) | | 5(x7)=5 | | 0=4*3^x | | k2=-12k | | 10(r-9)=-90+19r | | Y=m-3(1)-5 | | u+9=-2 | | F(3x-1)=x+2 | | 5x+2+3x+5+5x+10+4x+15+8x+8=540 | | p2-2p=0 | | 750+22(x-12)=650+130(x-10) | | 15g-2(2g+6)=11g-12 | | 8x+32=102 | | 9x+2=4x=1 | | 9x+2=4x=11 | | 10+55k=77 | | 50+10b=10(b+5) | | 5+5k=15 |