If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33x^2+11x=0
a = 33; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·33·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*33}=\frac{-22}{66} =-1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*33}=\frac{0}{66} =0 $
| 10x(50+3)=(10+3)= | | Y=1/4x^2-1-8 | | x4+2=29 | | 23=8(3k-5) | | 72-12x=130-70 | | 3n2-7n=0 | | (4x+1)/2=2x+7/3 | | 19=13x+32 | | -5-5v+4v=1+v | | x(x+5)-6=0 | | -2(6x-2)=12x+4 | | 9x+20+110=180 | | 103/5x10^=10 | | 17x2-8x=0 | | 5(12w-125)=3500 | | 12-8x=3(x+4 | | P=4×+q-5 | | -12-x=-0.75 | | -8+x-3+4x=3+3x | | -66=-9n+16n/4 | | 5x1-2x=0 | | 74=3(−10x−3)+6x | | 4h=12=4 | | 1/6x+7=3 | | 8(9d-4)=-25-6d | | 14x2-3x=0 | | 9x+25+×+5=180 | | 16y4=()2 | | 3x•12=48 | | 30x-15=6+14x | | 18=(a+5)*1.11 | | 80+0.70x=40+0.90x |