If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33x^2+8x-1=0
a = 33; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·33·(-1)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-14}{2*33}=\frac{-22}{66} =-1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+14}{2*33}=\frac{6}{66} =1/11 $
| 6=a7−3 | | -1-4x=-6x-15 | | -899=31v | | -4(-5x+3)=-192 | | 0=x+2/x-6 | | C=2y-43 | | -5+3(5p-8)=-89 | | 12c-4=14c-4 | | -2x+7=-3-x | | x2−x−12=0 | | 24-6w=7+5w24−6w=7+5w | | 5x^2-10x+1=1 | | 35(19+x)=50 | | 1.4z-0.5=3.2 | | (x+3)/7=4/8 | | 3z−6=6z−4z | | 3(m-2)^2-96=0 | | 3(x+7)=7+x | | -3+x^2/3=0 | | 6(1-5x)=28-8x | | f(2)=0.5^2 | | 7k-8(5k+6)=-246 | | (7x+20)+(2x+80)=180 | | 6-a=5+6a | | 5x-1+5x+8+x+8=90 | | 11x-148=180 | | 5(4-6x)=-190 | | 33x2+8x-30=0 | | x+11=−14 | | 9(x+2)+2=20 | | 150=-16t^2+18t+480 | | 4|7x|+3=27 |