34+8=n(n+4)

Simple and best practice solution for 34+8=n(n+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 34+8=n(n+4) equation:



34+8=n(n+4)
We move all terms to the left:
34+8-(n(n+4))=0
We add all the numbers together, and all the variables
-(n(n+4))+42=0
We calculate terms in parentheses: -(n(n+4)), so:
n(n+4)
We multiply parentheses
n^2+4n
Back to the equation:
-(n^2+4n)
We get rid of parentheses
-n^2-4n+42=0
We add all the numbers together, and all the variables
-1n^2-4n+42=0
a = -1; b = -4; c = +42;
Δ = b2-4ac
Δ = -42-4·(-1)·42
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{46}}{2*-1}=\frac{4-2\sqrt{46}}{-2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{46}}{2*-1}=\frac{4+2\sqrt{46}}{-2} $

See similar equations:

| -4+6c=32 | | 7x^2+14=63 | | x-0.6=312 | | K(x)=-4+2xK(36)= | | 10(x^2-5)=75 | | K(x)=-4+2x | | 80x^2=80 | | 3^y+1=8 | | 9(x+1)-(x+2)=-79 | | 10+5b=-60 | | 2p^2+13p-24=0 | | 8(s-9)=-5+(-4) | | Y=3x+13.5 | | 9(x+1-(x+2)=79 | | y=5.9+139.9(264) | | 1+12=6y | | 6x+10=15-4x | | 8(x^2-10)=40 | | -3+12=6y | | 5(4-t)=9 | | -10+3f=9+3f | | 129+(x+19)=180 | | -4+12=6y | | 6b+4=3b-20 | | 8=-5(k-6) | | 6b+4=3b-30 | | 3.5x-5=2.5x+3 | | 4+12=6y | | 8=-5(k-6 | | 3+12=6y | | 24=2x+8+6x | | -4(a-11)=2+(-9) |

Equations solver categories