34-(2c+4)=2(c+5)c

Simple and best practice solution for 34-(2c+4)=2(c+5)c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 34-(2c+4)=2(c+5)c equation:



34-(2c+4)=2(c+5)c
We move all terms to the left:
34-(2c+4)-(2(c+5)c)=0
We get rid of parentheses
-2c-(2(c+5)c)-4+34=0
We calculate terms in parentheses: -(2(c+5)c), so:
2(c+5)c
We multiply parentheses
2c^2+10c
Back to the equation:
-(2c^2+10c)
We add all the numbers together, and all the variables
-2c-(2c^2+10c)+30=0
We get rid of parentheses
-2c^2-2c-10c+30=0
We add all the numbers together, and all the variables
-2c^2-12c+30=0
a = -2; b = -12; c = +30;
Δ = b2-4ac
Δ = -122-4·(-2)·30
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8\sqrt{6}}{2*-2}=\frac{12-8\sqrt{6}}{-4} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8\sqrt{6}}{2*-2}=\frac{12+8\sqrt{6}}{-4} $

See similar equations:

| w+6+w+w+6+w=102 | | 6x+15-5x=18 | | -1x+48=16 | | 0.09(x+1,000)=4590 | | 6+2w=102 | | 12j-7j-1=19 | | 3/4x-1/2=5/6 | | 23x-1=280 | | -2a-15=15 | | 7y^2-6=31 | | 36+87+x=180 | | 3x-2=11-50 | | -y/2+3=6 | | 2(q+2)-13=3 | | 3x-9÷3=4 | | 2*3^x=1400 | | 0=y/4+3 | | 2(x+4)-2=48-5x | | 2(z+8)-9=-3 | | -11/2-2x=-11.5 | | 2.2c+8=74 | | 1-n+5/n^2=1/n^2 | | -k+-8=-17 | | 8×-14=4-7x | | 10b+12=62 | | 40/1=100000/x | | -p/4=3 | | -3(3m-10)-7=5(1m+1)+3m | | 8x-1=x+4 | | |3x-10|=2 | | −5x2+7x=−9 | | 7y+10+3y-7-6yy=4 |

Equations solver categories