35+x=3x(5+x)

Simple and best practice solution for 35+x=3x(5+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 35+x=3x(5+x) equation:


Simplifying
35 + x = 3x(5 + x)
35 + x = (5 * 3x + x * 3x)
35 + x = (15x + 3x2)

Solving
35 + x = 15x + 3x2

Solving for variable 'x'.

Combine like terms: x + -15x = -14x
35 + -14x + -3x2 = 15x + 3x2 + -15x + -3x2

Reorder the terms:
35 + -14x + -3x2 = 15x + -15x + 3x2 + -3x2

Combine like terms: 15x + -15x = 0
35 + -14x + -3x2 = 0 + 3x2 + -3x2
35 + -14x + -3x2 = 3x2 + -3x2

Combine like terms: 3x2 + -3x2 = 0
35 + -14x + -3x2 = 0

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
-11.66666667 + 4.666666667x + x2 = 0

Move the constant term to the right:

Add '11.66666667' to each side of the equation.
-11.66666667 + 4.666666667x + 11.66666667 + x2 = 0 + 11.66666667

Reorder the terms:
-11.66666667 + 11.66666667 + 4.666666667x + x2 = 0 + 11.66666667

Combine like terms: -11.66666667 + 11.66666667 = 0.00000000
0.00000000 + 4.666666667x + x2 = 0 + 11.66666667
4.666666667x + x2 = 0 + 11.66666667

Combine like terms: 0 + 11.66666667 = 11.66666667
4.666666667x + x2 = 11.66666667

The x term is 4.666666667x.  Take half its coefficient (2.333333334).
Square it (5.444444448) and add it to both sides.

Add '5.444444448' to each side of the equation.
4.666666667x + 5.444444448 + x2 = 11.66666667 + 5.444444448

Reorder the terms:
5.444444448 + 4.666666667x + x2 = 11.66666667 + 5.444444448

Combine like terms: 11.66666667 + 5.444444448 = 17.111111118
5.444444448 + 4.666666667x + x2 = 17.111111118

Factor a perfect square on the left side:
(x + 2.333333334)(x + 2.333333334) = 17.111111118

Calculate the square root of the right side: 4.136557883

Break this problem into two subproblems by setting 
(x + 2.333333334) equal to 4.136557883 and -4.136557883.

Subproblem 1

x + 2.333333334 = 4.136557883 Simplifying x + 2.333333334 = 4.136557883 Reorder the terms: 2.333333334 + x = 4.136557883 Solving 2.333333334 + x = 4.136557883 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2.333333334' to each side of the equation. 2.333333334 + -2.333333334 + x = 4.136557883 + -2.333333334 Combine like terms: 2.333333334 + -2.333333334 = 0.000000000 0.000000000 + x = 4.136557883 + -2.333333334 x = 4.136557883 + -2.333333334 Combine like terms: 4.136557883 + -2.333333334 = 1.803224549 x = 1.803224549 Simplifying x = 1.803224549

Subproblem 2

x + 2.333333334 = -4.136557883 Simplifying x + 2.333333334 = -4.136557883 Reorder the terms: 2.333333334 + x = -4.136557883 Solving 2.333333334 + x = -4.136557883 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2.333333334' to each side of the equation. 2.333333334 + -2.333333334 + x = -4.136557883 + -2.333333334 Combine like terms: 2.333333334 + -2.333333334 = 0.000000000 0.000000000 + x = -4.136557883 + -2.333333334 x = -4.136557883 + -2.333333334 Combine like terms: -4.136557883 + -2.333333334 = -6.469891217 x = -6.469891217 Simplifying x = -6.469891217

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.803224549, -6.469891217}

See similar equations:

| 4x-4+13=5x-1+9x | | 23x/x^2 | | (x-2)(x)=0 | | x=5my+2b | | (5ab+x)(2ab-x)= | | 2×n/2 | | 5m+-3m+-15=0 | | 2xn/2 | | -16n+10=-14n-14 | | 8t^2+57y-56= | | 0.51x^2+80x-1880=0 | | (x/2)+(1/3)=(x/3)+(1/2) | | 2=×/5 | | 8.715/8.3= | | 1/3(6-x)=1/4 | | 169=m^2 | | ax^3-14ax^2+24ax= | | -1.4a=4.2 | | 1.4a=4.2 | | 5(-y-2)+y=2 | | f(-5)=4-7x | | 60.15/7.5= | | 9x+19=73 | | 4x^3-36x^2+80x= | | F(x)=6ln(2) | | xy-x-y+1=0 | | -1/8x-21=0 | | F(2)=6ln(2) | | 74/98=x/4 | | -0.51x^2+100x=1700 | | (v+3)(v-2)=0 | | (4z-9)(6+z)=0 |

Equations solver categories