350=(175-x/2)*x

Simple and best practice solution for 350=(175-x/2)*x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 350=(175-x/2)*x equation:



350=(175-x/2)*x
We move all terms to the left:
350-((175-x/2)*x)=0
Domain of the equation: 2)*x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-((-x/2+175)*x)+350=0
We multiply all the terms by the denominator
-((-x+350*2+175)*x)=0
We calculate terms in parentheses: -((-x+350*2+175)*x), so:
(-x+350*2+175)*x
We add all the numbers together, and all the variables
(-1x+875)*x
We multiply parentheses
-1x^2+875x
Back to the equation:
-(-1x^2+875x)
We get rid of parentheses
1x^2-875x=0
We add all the numbers together, and all the variables
x^2-875x=0
a = 1; b = -875; c = 0;
Δ = b2-4ac
Δ = -8752-4·1·0
Δ = 765625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{765625}=875$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-875)-875}{2*1}=\frac{0}{2} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-875)+875}{2*1}=\frac{1750}{2} =875 $

See similar equations:

| 5-(x-3)=9-3x | | -5-3(9t+10)=5-8t-9t | | 3x-9=3x-0 | | k−3=–3k+9 | | -9+2x-1-3x=x-5-4x+2x | | 12y=+24y | | 4x+9-4x=3(x-7) | | -6(a-8)=2(6+3a) | | 5/4y=-35 | | -3x+4.6=5.9 | | -4s=4(3s+4) | | −10n=50 | | 2=a9 | | 5r-1=-2r+13 | | x+9.3=12.1 | | 20x^2-21x-12=x | | 3x+21+3=8x–46 | | 15x+10=10x–20 | | -4p-24=-48 | | 9x+13x+2=180 | | 20x2+-21x-12=x | | 1+2+3+⋯+n=n(n+1)/2= | | 8m-22=3(3m+)-m | | 2x+7=9x+1 | | 2h+14=4h | | 9x+13x=2 | | 9m+7=-11 | | 2(x+2)=-4x-3-8(x-6) | | 3(2z+25)=2(z-1) | | g=2g+14 | | 2=6v+20 | | 3x+4-5x=6x+76 |

Equations solver categories