352+122=c2

Simple and best practice solution for 352+122=c2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 352+122=c2 equation:



352+122=c2
We move all terms to the left:
352+122-(c2)=0
We add all the numbers together, and all the variables
-1c^2+474=0
a = -1; b = 0; c = +474;
Δ = b2-4ac
Δ = 02-4·(-1)·474
Δ = 1896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1896}=\sqrt{4*474}=\sqrt{4}*\sqrt{474}=2\sqrt{474}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{474}}{2*-1}=\frac{0-2\sqrt{474}}{-2} =-\frac{2\sqrt{474}}{-2} =-\frac{\sqrt{474}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{474}}{2*-1}=\frac{0+2\sqrt{474}}{-2} =\frac{2\sqrt{474}}{-2} =\frac{\sqrt{474}}{-1} $

See similar equations:

| -2x=6(x-12) | | 3w-13w=40 | | 4(4-w)=3=(2w+2) | | 8x-1-5x-7=2x+4-4x | | 433=36x | | 21=(–2/3)g | | 3/2(4x-2)-2=1 | | -2-10=(z)/(10) | | −8c+5=277 | | 946=550(1+0.18t)) | | 5=2x=2x+6 | | 4=2p-6p | | -20f−8=-3f+17−17f | | (4)/(9)a=(1)/(9)a+(5)/(6) | | -4x-2x-10x=2x-34 | | 72=y-8 | | 4x-2x-10x=2x-34 | | b-70.25=43.50 | | 5-2x=8-5 | | -16x^2-38x+2035=0 | | (2)/(7)x-9=(5)/(7)x-15 | | 2x-6=-14-3x | | 40x+30=150 | | x=14=-6 | | -2+v/2=-14 | | z/8+7=5 | | -9-9x+7=3x+19 | | 5y^2+24y-324=0 | | 20=6-3x | | (u^2+9u+18)(7u-14)=0 | | 7n=6n-5=4n+4 | | 6x–3x+4–2x= |

Equations solver categories