35=2(x+3)(3x+1)+2x

Simple and best practice solution for 35=2(x+3)(3x+1)+2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 35=2(x+3)(3x+1)+2x equation:



35=2(x+3)(3x+1)+2x
We move all terms to the left:
35-(2(x+3)(3x+1)+2x)=0
We multiply parentheses ..
-(2(+3x^2+x+9x+3)+2x)+35=0
We calculate terms in parentheses: -(2(+3x^2+x+9x+3)+2x), so:
2(+3x^2+x+9x+3)+2x
We multiply parentheses
6x^2+2x+18x+2x+6
We add all the numbers together, and all the variables
6x^2+22x+6
Back to the equation:
-(6x^2+22x+6)
We get rid of parentheses
-6x^2-22x-6+35=0
We add all the numbers together, and all the variables
-6x^2-22x+29=0
a = -6; b = -22; c = +29;
Δ = b2-4ac
Δ = -222-4·(-6)·29
Δ = 1180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1180}=\sqrt{4*295}=\sqrt{4}*\sqrt{295}=2\sqrt{295}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{295}}{2*-6}=\frac{22-2\sqrt{295}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{295}}{2*-6}=\frac{22+2\sqrt{295}}{-12} $

See similar equations:

| 3-m/5=9 | | 3+11=-2(5x-7) | | 3z-4(-5z+2)=38 | | -4(3n–2)-n=-11(n–1) | | 10−2n=18 | | 3x-11=9+7x | | t−845=2 | | 5=-19+4x | | 2y/8=2 | | 8x–2(x–7)=20 | | 3x-2=-98-5x | | 9(u+7)=90 | | c-(-55)/10=8 | | 8a+6=78a= | | -2m=-70 | | 9=-7m+1–6 | | 15-1.5(y-5)-7.5=25y-50 | | 3b-21=3 | | 72=9(m-85 | | 5=q/3+7 | | -x+6=78-7x | | 2.5=x7.2 | | -4(3n–2)-n=-11(n–1)= | | 3(2x+6)=-32+20 | | 4a^2-40a=0 | | t/6+13=19 | | 5y-8=3y=+12 | | 2+7x=2x-8 | | u=3.78 | | 4=4d+d-7 | | 8(w+6)=88 | | 1.2x-6=5(x+2) |

Equations solver categories