If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35n^2+250n-240=0
a = 35; b = 250; c = -240;
Δ = b2-4ac
Δ = 2502-4·35·(-240)
Δ = 96100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{96100}=310$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(250)-310}{2*35}=\frac{-560}{70} =-8 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(250)+310}{2*35}=\frac{60}{70} =6/7 $
| 2-x+3x=-2x+10 | | 8*0.50=x | | 7(6-7b)=287 | | -7(n-7)=98 | | -1=-1-7v-5v | | 8=-8-3x-x | | 0.6x=324 | | 44+.06m=35+.09 | | 18^2+0.2x^2=0.8x^2 | | (5x+1)+29=180 | | (3z+4)(3-z)=0 | | (4+9+16÷4)-8-3*5=x | | -9/9-1=m | | -30x+42=-138 | | x+8=-16+2x | | 135=-15x+15 | | 5x-2=x10 | | 43=1-7x | | -5x-8-56x=-8 | | 2*(x+4)/3=16/5 | | 4^-x+10=676 | | 3x-5(x-3)=-2+4x-25 | | 18+x/9=36 | | 1/2x-3=-1/3+2 | | 121+9x=6x+3 | | 5x–35=50 | | 77+9x+44=6x+3 | | 3x+6−3=3x−2 | | 9x+6x+3=121 | | 9x10x2−6=9x10, | | 2k=9+3 | | 11+2y=49 |