If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2+-18x+-5=0
We add all the numbers together, and all the variables
35x^2-18x=0
a = 35; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·35·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*35}=\frac{0}{70} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*35}=\frac{36}{70} =18/35 $
| C(35)=0.75y+6 | | 30x=12x+19x | | 5.x+2=3.x-1 | | 4T^2+9=13t | | 23(c-18)=7 | | 3y+10/4=2y | | 35=0.75y+6 | | 4c+3(c-2)=24 | | w-4/w+1=w-5/w-3+1 | | 0=0.75y+6 | | n-2|7=2 | | 4t^2+2=8t | | 9x+6=−3x+x+6=-3x+42 | | -2.1=0.7d | | u+5/u+4+1=u-6/u-2 | | 2/3x+9=81 | | 12(12(16+8x)=15+x)=15+3x | | 0=(7x^2+18x+40) | | 5x-3+x=4x+7 | | /12(12(16+8x)=15+x)=15+3x | | 5g-7=52 | | 6.4−2x−6.63x=610.5 | | 14(14(16+16x)=14+x)=14+3x | | 3/4m-5=7 | | 19/5+4y=9y-1/5 | | 2x+30+150=180 | | 11x+2=12x+4 | | 45=9-6n | | 173=2^x/2^3x) | | 5x+19=21 | | -70=14a | | |2x+3|=4x-3 |