If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2+2835x=0
a = 35; b = 2835; c = 0;
Δ = b2-4ac
Δ = 28352-4·35·0
Δ = 8037225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8037225}=2835$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2835)-2835}{2*35}=\frac{-5670}{70} =-81 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2835)+2835}{2*35}=\frac{0}{70} =0 $
| s+–191=705 | | 9x⁴-8x²-1=0 | | x+x+5=22 | | -7=1.4k | | (0.58-x)/x=0.3 | | (D^4-5D^2+4)*y=0 | | –2(5y–6)=3y–8 | | 4(x+¹)=-28 | | 8(z-10)=40 | | +5(4×+3y=10) | | (0.58-x)/x=0.5 | | 12x-16=8x+2 | | 8x+0.09876.8=8 | | 2x+4.996.0=8 | | 29747.2=x+(x*12/100) | | m+–152=–518 | | 26=j/17 | | 6x=10x/2-x-1 | | 7y+12=70 | | x/15=135 | | 895=237+j | | 12.5+u=26.9 | | r+103=4 | | 20+7k=8(k=2) | | 3⋅4n=768 | | 12-x=15/17 | | -x²=-67x | | -x^2=-67x | | -x/4-18=20 | | 13x²+78x=0. | | 13x2+78x=0. | | (2x-3)+(3x-17)=60 |