If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2-12x-32=0
a = 35; b = -12; c = -32;
Δ = b2-4ac
Δ = -122-4·35·(-32)
Δ = 4624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4624}=68$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-68}{2*35}=\frac{-56}{70} =-4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+68}{2*35}=\frac{80}{70} =1+1/7 $
| 2x+10x+13=145 | | 0.096=x*0.2 | | 4(3x+13)=28 | | 3x/2x=35 | | 3x+2=7x+11 | | 4(-x-2)=-6 | | d/2+3.72=0.72 | | 3(m-1)=8 | | 136=8(1-2p) | | 2(3y+5)=25 | | y+3y+(y-2)+4(y-2)=116 | | 4h+12=80 | | 4x^2-26x=90 | | 3f-13=20 | | 41=12c-7 | | -5(1+x)=30 | | 2d-11=37 | | -2(p-5)=20 | | k-6=21 | | j-17=-18 | | -3m+5m=-6+4m | | (3-I)^2-(1-i)^2=0 | | -(x-6)-8=4 | | e-9=-23 | | d+9=-6 | | 7x+6=14x | | 4(0)-6y=12 | | 7n+6(n+7)=-12n-(-9n+6) | | 5c-14=-4 | | -5-3r=-6-2r | | -2n-4n=5n | | -6x=6-5x |