If it's not what You are looking for type in the equation solver your own equation and let us solve it.
360=(2x+4)(2x+6)+140
We move all terms to the left:
360-((2x+4)(2x+6)+140)=0
We multiply parentheses ..
-((+4x^2+12x+8x+24)+140)+360=0
We calculate terms in parentheses: -((+4x^2+12x+8x+24)+140), so:We get rid of parentheses
(+4x^2+12x+8x+24)+140
We get rid of parentheses
4x^2+12x+8x+24+140
We add all the numbers together, and all the variables
4x^2+20x+164
Back to the equation:
-(4x^2+20x+164)
-4x^2-20x-164+360=0
We add all the numbers together, and all the variables
-4x^2-20x+196=0
a = -4; b = -20; c = +196;
Δ = b2-4ac
Δ = -202-4·(-4)·196
Δ = 3536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3536}=\sqrt{16*221}=\sqrt{16}*\sqrt{221}=4\sqrt{221}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{221}}{2*-4}=\frac{20-4\sqrt{221}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{221}}{2*-4}=\frac{20+4\sqrt{221}}{-8} $
| -u/6=59 | | 360=(2x=4)+(2x+6)+140 | | 6x–4(-3x+2)=10 | | 360=(2x=4)(2x+6)+140 | | 360=(2x=4)(2x+6) | | -48=v/6 | | 6x-8=7x+9= | | |4y+4|=12 | | 360=4x-150 | | 3x-130+x+10=180 | | 3(x+4)+5(4x+9)=4(5x-9)-10 | | -32x=-9 | | 2(3x+5)-2x=2=0 | | x+20=100-x | | 2(3x=5)-2x=2=0 | | 4(2x-3£=6x+2 | | -3=-31v | | -4+8x+x=-42 | | 4+9x=10x+2 | | 36=9(x-5) | | 4x/10=8 | | {1}{2}t+36=-5 | | 8-15x=53 | | 4(3x-1)=5(-6x-3) | | 12x=4.5 | | 2a=(a+10)-44 | | n+4=(7+1)+5 | | -19=3h | | 10-3x=-15 | | 0=-5t2+2t+3 | | x÷6=5÷2 | | 54=2(4x+7)+2(x) |