360=81+x+x+x+1/2x

Simple and best practice solution for 360=81+x+x+x+1/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 360=81+x+x+x+1/2x equation:



360=81+x+x+x+1/2x
We move all terms to the left:
360-(81+x+x+x+1/2x)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-(3x+1/2x+81)+360=0
We get rid of parentheses
-3x-1/2x-81+360=0
We multiply all the terms by the denominator
-3x*2x-81*2x+360*2x-1=0
Wy multiply elements
-6x^2-162x+720x-1=0
We add all the numbers together, and all the variables
-6x^2+558x-1=0
a = -6; b = 558; c = -1;
Δ = b2-4ac
Δ = 5582-4·(-6)·(-1)
Δ = 311340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{311340}=\sqrt{4*77835}=\sqrt{4}*\sqrt{77835}=2\sqrt{77835}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(558)-2\sqrt{77835}}{2*-6}=\frac{-558-2\sqrt{77835}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(558)+2\sqrt{77835}}{2*-6}=\frac{-558+2\sqrt{77835}}{-12} $

See similar equations:

| 7(8x+5)=3(7x=3)+166 | | (x-15)(x-15)(x-15)=90 | | 9x+12=12x+12 | | 360=x+(x-35)+(x-46)-1/2x | | x-15x-15x-15=90 | | 360=x+(x=35)+(x-46)=1/2x | | (60-30x)/8=0 | | 12m+8-5+2+m=6(m+1) | | -30x+60=8 | | 4z/10+9=6 | | 3y-7=7y+25 | | 3(3x-5)=-51 | | V=18-2v | | 4=a+2a | | T+5m=-10 | | -8-(-26)=x/7 | | 40x+8(1.5)x=442 | | x/3+1/4=1 | | 6x*2x-3=0 | | 12z+z+3z−13z+4z=14 | | 7/9x-4/9x=2/3 | | -2-3b+5=17+b | | 15=5+(1/2)a*36 | | 15=5+(1/2)a36 | | 10^(x)=-14 | | 19x=x+36 | | 18n+5n+3n−23n=9 | | x^2-1,5x-1=0 | | 11z−11z+5z=5 | | -6+3x-2=8x+2x | | 8x=-2.6-3 | | 7p-5p=10 |

Equations solver categories