360=x+x-46+x-35+1/2x

Simple and best practice solution for 360=x+x-46+x-35+1/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 360=x+x-46+x-35+1/2x equation:



360=x+x-46+x-35+1/2x
We move all terms to the left:
360-(x+x-46+x-35+1/2x)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-(3x+1/2x-81)+360=0
We get rid of parentheses
-3x-1/2x+81+360=0
We multiply all the terms by the denominator
-3x*2x+81*2x+360*2x-1=0
Wy multiply elements
-6x^2+162x+720x-1=0
We add all the numbers together, and all the variables
-6x^2+882x-1=0
a = -6; b = 882; c = -1;
Δ = b2-4ac
Δ = 8822-4·(-6)·(-1)
Δ = 777900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{777900}=\sqrt{100*7779}=\sqrt{100}*\sqrt{7779}=10\sqrt{7779}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(882)-10\sqrt{7779}}{2*-6}=\frac{-882-10\sqrt{7779}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(882)+10\sqrt{7779}}{2*-6}=\frac{-882+10\sqrt{7779}}{-12} $

See similar equations:

| 7x+5+20x+60+x=180 | | -13=3u+10 | | |3x+5|=12 | | 6+9x=-10x+12 | | 6-9x=7x+12 | | 9.5x60=x | | 7x+4x-60=75-4x | | -8=54k | | P²-10p+12=0 | | 49y+650=0.15 | | 8x+6x-72=36-4x | | 3(p+3.99)=27.93 | | 4x-25+6x-51+1+14=180 | | 9^4x=8 | | 5^(2x+1)=3^(4x-1) | | 7y+14–(4y–10)=49–2y | | 11x+189=3×-5 | | (12x-9)+(2x+21)=90 | | 7x+4x-48=80-5x | | 100-650=49+0.15y | | 4x(10-x)=46-6x | | 4x(10-x)=46-6- | | 12n^2-108=0 | | H(t)=25-5t2 | | 11x+5=3×+189 | | 13x/12=20 | | $6(13-5)+$4s=$62 | | 6x+4(2)=24 | | x=140/(3/2) | | | | 6x+1=175 | | D*12=4000-3000e-0.06*12 |

Equations solver categories