If it's not what You are looking for type in the equation solver your own equation and let us solve it.
361=j2
We move all terms to the left:
361-(j2)=0
We add all the numbers together, and all the variables
-1j^2+361=0
a = -1; b = 0; c = +361;
Δ = b2-4ac
Δ = 02-4·(-1)·361
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-38}{2*-1}=\frac{-38}{-2} =+19 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+38}{2*-1}=\frac{38}{-2} =-19 $
| 3x2=9−6x | | 3+x/3+x+7/2=4x+1 | | 4/5r=1/6 | | −24−18p=38p−24−18p=38pp | | 0.4p-4=3.6 | | -8)a/8-2)=26 | | -4x=5+x-4x | | -7+2x=-x-1 | | 6−x2−4x+3=√(362^(x+12)) | | |4x-7|=-1 | | 5-4{n-5}=25+4n | | y/2+y/4=3/10 | | 6x=1,2+x | | -4(r2)=4(2-4r) | | 10x^2+4=-7 | | 8.7+x=7 | | d/1.6+31=40 | | 8+x/2=11 | | 8=4/(3y) | | 1+5m=1+4m+5-10 | | -8y^2+y^2=24 | | 8x-7=-33 | | 75.4=2(3.14r) | | N+3n=14+4n | | 4=77/x | | 2/5w=1/4 | | 6=4x+9-1 | | 7=k-8/3 | | 3x-7x=-2x+4 | | 0.42+2.1b=b+5.7 | | 44=4x-4 | | 8x-5=-33 |