362=-6+8(7a-3)a=

Simple and best practice solution for 362=-6+8(7a-3)a= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 362=-6+8(7a-3)a= equation:



362=-6+8(7a-3)a=
We move all terms to the left:
362-(-6+8(7a-3)a)=0
We calculate terms in parentheses: -(-6+8(7a-3)a), so:
-6+8(7a-3)a
determiningTheFunctionDomain 8(7a-3)a-6
We multiply parentheses
56a^2-24a-6
Back to the equation:
-(56a^2-24a-6)
We get rid of parentheses
-56a^2+24a+6+362=0
We add all the numbers together, and all the variables
-56a^2+24a+368=0
a = -56; b = 24; c = +368;
Δ = b2-4ac
Δ = 242-4·(-56)·368
Δ = 83008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{83008}=\sqrt{64*1297}=\sqrt{64}*\sqrt{1297}=8\sqrt{1297}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{1297}}{2*-56}=\frac{-24-8\sqrt{1297}}{-112} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{1297}}{2*-56}=\frac{-24+8\sqrt{1297}}{-112} $

See similar equations:

| 2x-(6x+4)=(x-9)-6(2x-4) | | -2(-6+4m)=-36 | | -5n+10=30n= | | -80=-4(2x+8) | | 64+2+3x=180 | | 38=-19nn= | | -9(-3x+7)=2(4x-3) | | 22=5(w+5)-8w | | 33=15–6d+4d | | -6y-4=50 | | 56+5y=12y | | 54=3(-2-4n) | | 54=3(-2-4n | | -2/3x+6=38 | | 5y-17+2y+50=180 | | -24+6x=6(6x+6) | | -6x-(-4x+9)=(x-1)-2(4x-6) | | 45x2–36x= (5x–4) | | 2x+174=152 | | 3(k+4)=2(k-9) | | 10(n=14 | | f+18=33 | | 189=-6x+3(-6x-18) | | ∣7x+10∣=17 | | 33+x=x+141 | | 4p=29 | | 2(2x+5)-6=x+11 | | (2x+3)(3x+1)=6x^2+11x+3 | | 4(1+3n)=4(n+3)+6n | | (2s-1)+(s+1)=180 | | -6x-6(2x+17)=114 | | 7x+8+3x=35 |

Equations solver categories