367.50=(1500)(r)(2)

Simple and best practice solution for 367.50=(1500)(r)(2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 367.50=(1500)(r)(2) equation:



367.50=(1500)(r)(2)
We move all terms to the left:
367.50-((1500)(r)(2))=0
determiningTheFunctionDomain -1500r2+367.50=0
We add all the numbers together, and all the variables
-1500r^2+367.5=0
a = -1500; b = 0; c = +367.5;
Δ = b2-4ac
Δ = 02-4·(-1500)·367.5
Δ = 2205000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2205000}=\sqrt{1102500*2}=\sqrt{1102500}*\sqrt{2}=1050\sqrt{2}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1050\sqrt{2}}{2*-1500}=\frac{0-1050\sqrt{2}}{-3000} =-\frac{1050\sqrt{2}}{-3000} =-\frac{7\sqrt{2}}{-20} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1050\sqrt{2}}{2*-1500}=\frac{0+1050\sqrt{2}}{-3000} =\frac{1050\sqrt{2}}{-3000} =\frac{7\sqrt{2}}{-20} $

See similar equations:

| 12x=3×=54 | | 11-2x=8-2x | | 100*x+7*5*5=-6*5 | | -6x+3+4x=7-2x+10 | | 11-4(4x-6)=-5 | | 12x-3+6x=5(6x-2)+3 | | 220-w=108 | | 87-v=205 | | 77=-v+255 | | C(x)=0.10x+10.25 | | 4/12=u/9u= | | 5-(x-2)=18 | | x(x+1)(x+2)=2431 | | 5^(x+2)=258 | | t^2+3t=2 | | t^2+3t=3 | | 5^x+2=258 | | 5^(x)=1/3,125 | | 12y−1=5y+27 | | 30x/6=180 | | X2=72-6x | | 2m+19=5m-2 | | (6x-6)/4=(3x+18)/9 | | 6(3x)+4=2(5x+10) | | x+9/10=8/5+x-6/2 | | 2/3=3/10v | | 0.2^n=0.5 | | x/9=x/8-1 | | 4x-3(3x+6)=-13 | | X/9=x/9-1 | | 15y-1=11/27+2 | | -6=2(u+6)-5u |

Equations solver categories