36=(x+1)(x+4)

Simple and best practice solution for 36=(x+1)(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 36=(x+1)(x+4) equation:



36=(x+1)(x+4)
We move all terms to the left:
36-((x+1)(x+4))=0
We multiply parentheses ..
-((+x^2+4x+x+4))+36=0
We calculate terms in parentheses: -((+x^2+4x+x+4)), so:
(+x^2+4x+x+4)
We get rid of parentheses
x^2+4x+x+4
We add all the numbers together, and all the variables
x^2+5x+4
Back to the equation:
-(x^2+5x+4)
We get rid of parentheses
-x^2-5x-4+36=0
We add all the numbers together, and all the variables
-1x^2-5x+32=0
a = -1; b = -5; c = +32;
Δ = b2-4ac
Δ = -52-4·(-1)·32
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3\sqrt{17}}{2*-1}=\frac{5-3\sqrt{17}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3\sqrt{17}}{2*-1}=\frac{5+3\sqrt{17}}{-2} $

See similar equations:

| 14-3n=53 | | 20-4x=6x+30 | | 42x3=2x | | -8(-4x+4)=-160 | | (4x−8)+(2x+17)+(10x+3)=180 | | (12-3x)×2=9×(7x+18) | | 2-j=3j+10 | | Y=4x-2/11+7 | | -10a-4(2a+1)=15a-(3-a) | | 2x+3=380 | | 11v=4v+14 | | 7x–3=3x+9 | | 2/4=12/4x | | 6/3=10/x | | (12-3x)×=9(7x+18) | | −6(1+7k)=−2−7(1+6k) | | 2b+b-10=10+5b | | -2+6x+7x=37 | | x3+3=24 | | 2y-18=-24+12 | | -0.25z=(-1.25) | | 14g+6g−23=g | | 29=-d+6 | | 4x+7=-7x+5 | | -8.5x-3.5x=-75 | | -5(8+r)+6(r+6)=8r-5r | | -2x+6=4.5 | | 10-5m=-10-9m | | 2x-30=180-x | | 2/3l=22 | | -26=6n+4 | | 5h-10=2+7h |

Equations solver categories