36=(x-2)*(2x-2)

Simple and best practice solution for 36=(x-2)*(2x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 36=(x-2)*(2x-2) equation:



36=(x-2)(2x-2)
We move all terms to the left:
36-((x-2)(2x-2))=0
We multiply parentheses ..
-((+2x^2-2x-4x+4))+36=0
We calculate terms in parentheses: -((+2x^2-2x-4x+4)), so:
(+2x^2-2x-4x+4)
We get rid of parentheses
2x^2-2x-4x+4
We add all the numbers together, and all the variables
2x^2-6x+4
Back to the equation:
-(2x^2-6x+4)
We get rid of parentheses
-2x^2+6x-4+36=0
We add all the numbers together, and all the variables
-2x^2+6x+32=0
a = -2; b = 6; c = +32;
Δ = b2-4ac
Δ = 62-4·(-2)·32
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{73}}{2*-2}=\frac{-6-2\sqrt{73}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{73}}{2*-2}=\frac{-6+2\sqrt{73}}{-4} $

See similar equations:

| 10x-85+7x+10=180 | | 2x-45=300 | | -5+7k=-10 | | 10x+16=6x+92 | | 13a-5a=16 | | 36=(x-2)*(x-2+x+4) | | 11p+3p-7p-5p=4 | | x=1+1/19 | | 2y-2y+4y+2y-4y=14 | | 64π=π(r²)(4) | | 15c-11c+c=15 | | 0.5=0.9^x | | 19.3y=38.6 | | x+170x=180 | | 2a+5a+3a-7a=18 | | 12+3h=-30 | | 2x-16+4×+4=180 | | 17k-14k=18 | | 4y-9=27+5 | | 17n-15n=18 | | 81={t-(-40)}+11 | | 11=f/33 | | 17r+r2=–52 | | 4X+6x=300 | | 81={t-(4)}+111 | | 29x+1=88 | | 2^(x-2)+2^x+2^(x+2)=84 | | -11+12g=8g+17 | | 8x+14=9x+10 | | x^2+18x+228=0 | | 2(2x-1)=55 | | -1=-2m+9 |

Equations solver categories