If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x+9x+5=(2x+3)(3x+2)
We move all terms to the left:
36x+9x+5-((2x+3)(3x+2))=0
We add all the numbers together, and all the variables
45x-((2x+3)(3x+2))+5=0
We multiply parentheses ..
-((+6x^2+4x+9x+6))+45x+5=0
We calculate terms in parentheses: -((+6x^2+4x+9x+6)), so:We add all the numbers together, and all the variables
(+6x^2+4x+9x+6)
We get rid of parentheses
6x^2+4x+9x+6
We add all the numbers together, and all the variables
6x^2+13x+6
Back to the equation:
-(6x^2+13x+6)
45x-(6x^2+13x+6)+5=0
We get rid of parentheses
-6x^2+45x-13x-6+5=0
We add all the numbers together, and all the variables
-6x^2+32x-1=0
a = -6; b = 32; c = -1;
Δ = b2-4ac
Δ = 322-4·(-6)·(-1)
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-10\sqrt{10}}{2*-6}=\frac{-32-10\sqrt{10}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+10\sqrt{10}}{2*-6}=\frac{-32+10\sqrt{10}}{-12} $
| x/4+5x/2=6 | | x/3+14=20 | | 3/4x+1/3=5 | | 8z=44 | | -10x+25=-5 | | 4(3x-4)+20=28 | | 3/5x+4=43 | | S=8t-t^2 | | 3(1-3x=-8x+14 | | -7(-8a-7)=-7(1-7a)+7 | | 6(x+7)^2=12 | | -2y+34=3y-26 | | 48=-6x-4x+1 | | 5x=7x+7 | | (x-1)(x+2)-1(2x-3)(x+4)-x+14=0 | | q-25=-19 | | -3/8=3/4y | | 2.25-3z=0.37z-3/4z | | 4(2x-6)-5x=0 | | 3/8=3/4y | | p-17=40 | | 14=11+w/8*6 | | L+3=w | | 3y-y+8-2=20 | | e=44+4 | | (2y+9)(3+y)=0 | | 8y+4/3+3y-1/6=17 | | 11(12p+6)=-6(p-9)+12 | | 2x+3(x+4)/3=7/2 | | -|-1|=t/15 | | -4-5+9x=90 | | 12d-9=27 |