If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+24x-7=0
a = 36; b = 24; c = -7;
Δ = b2-4ac
Δ = 242-4·36·(-7)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-12\sqrt{11}}{2*36}=\frac{-24-12\sqrt{11}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+12\sqrt{11}}{2*36}=\frac{-24+12\sqrt{11}}{72} $
| 36-2d-2d=22 | | 4b+5=1+5b4= | | 23=x;x=4 | | 4x+22=5(x-1) | | 8y^2+5=7y | | 8y2+5=7y | | 3x+2=34-2 | | (x+2)^2=6 | | 3x+6=63-78 | | 3x+2°=5x-34° | | 3x+6=63+78 | | 5×0-2y=0 | | 137=3x+41 | | 4x^2-37x^2+9=0 | | 9^3+9y=0 | | 3(x+6)=2(2x+3) | | 3x-²=81 | | 12x+1=456321 | | 9x^-40x^2+16=0 | | 8439428420423x+749320+30x+x=1 | | 8439428420423x749320+30x+x=1 | | 4398290x+289=19 | | 6x=56.7 | | (n)=−6−4(n−1) | | a+(-1.3=-4.5 | | 78=-12x+150 | | -4(2x+5)+8x=-11 | | 2x+7/6x=3x-7/6 | | Y=8x2–16x-4 | | 8a-40=200 | | k^2+-11k+-242=0 | | -3a+10=2a+8+1(a=1/5) |