If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+540x+1800=0
a = 36; b = 540; c = +1800;
Δ = b2-4ac
Δ = 5402-4·36·1800
Δ = 32400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{32400}=180$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(540)-180}{2*36}=\frac{-720}{72} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(540)+180}{2*36}=\frac{-360}{72} =-5 $
| (3x)+(75)-(7x-5)=180 | | 25x2-425x+1750=0 | | 10x2+100x+210=0 | | 10-4(x+2)=-14 | | 4x2−7x+3=0 | | q−54=10 | | 4(p+5)=2p-12 | | 45+i=92 | | -3(x-2)=-2x+1+4x | | 72+40+4x+12=180 | | (40)+(6x)+(3x+5)=180 | | u+12=98 | | s10=4 | | 4x+10=×+40 | | 16=n/4+21 | | 93+x+1=3x | | 10−3/n=6 | | (7x+3)+(6x+6)+(67)=180 | | 10−n/3=6 | | F(t)=(t+4)(t-2.3) | | 7x+2x-4=-8+3(3x-2) | | 10=g-28 | | (x+5)2=27 | | 63=u+45 | | −8−n/2=−13 | | -10x-9=-17+x | | 18=6+n/3 | | (2x-11)+(2x+1)+(90)=180 | | A^-6a=0 | | 3x=(x-9)+2x | | 8=88÷f | | 2x^2-x=12-3x |