If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+87x+45=0
a = 36; b = 87; c = +45;
Δ = b2-4ac
Δ = 872-4·36·45
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(87)-33}{2*36}=\frac{-120}{72} =-1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(87)+33}{2*36}=\frac{-54}{72} =-3/4 $
| x+0.08=198.72 | | 8c-5=48 | | 3y-30=2y+40 | | (5x/4)=1-(1/5)(x-(1/10)) | | -88(n-12)=n-89 | | ((2r-3)/4)-8=50 | | 5p+7(-8p-7)=-6-8p | | 3y-30=27+40 | | 7=4x-6 | | 4x-16=360 | | 18-10=x/5 | | 2(s-5)=2(s+5 | | -108•3.14=6•3.14j | | 9x+7-4x=17 | | 6/11-8x=-8x+1/11 | | -88(n-12)=n+(-89) | | X^2-272x+4096=0 | | 4-3.2h=13.6 | | 7/9x-14=-7 | | 0,5x^2-4x=6 | | (8x)^4+-(24x)^3=0 | | (3x-2)/7=22 | | 2/3+5n=1/3-6n | | 5u+5(1-5u)=u+8 | | -8-8=-9+x | | (8x+6/4)+(6x+4÷5)=-3 | | 30x^2+12x=0 | | -8y+6(y+4)=34 | | 9.2a+5.514=158.234 | | 8+2/7b=20 | | 8x4+-24x3=0 | | 3y-3+y+29=6y+30-4y |