If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-13x-30=0
a = 36; b = -13; c = -30;
Δ = b2-4ac
Δ = -132-4·36·(-30)
Δ = 4489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4489}=67$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-67}{2*36}=\frac{-54}{72} =-3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+67}{2*36}=\frac{80}{72} =1+1/9 $
| 46=y/3+16 | | 8p=928 | | x+90+52.9=180 | | (6x+3)+(4x+7)=90 | | -8(x-7)=-10(x-9) | | 432=-16u | | 4−(−x+6)=4+5 | | x+4+4x-1+3x=180 | | k-30=54 | | 82u=12 | | 520=(4x+3)x | | 8=v-86 | | x+5=13x+9 | | -7x+3(2x+4)=6 | | 38+2k=8(k+4) | | t+15=38 | | 24=h-75 | | (4x-6)+(3x+5)=90 | | -7m+9=-45 | | x-12=x+9 | | -7m+9=-45+3m | | 6(x-5)+2=26 | | 49=-5x+3(3x+3) | | k−6=4 | | 8(-10+n)=-64 | | -4a+9=7a-31 | | 1=n/3 | | Y=(1.3)•x | | 3+5n=-3+8n | | (5x+9)+(x+3)+(6x)=180 | | 3x+5(x-9)=10x+45-2x | | -3.7b+1.2=-7.8-5.5b |