If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-15x=0
a = 36; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·36·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*36}=\frac{0}{72} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*36}=\frac{30}{72} =5/12 $
| 36x×2-15x=0 | | P(x)=x4+49x2 | | 0.44q+0.25-0.25q=0.36q=0.19-0.19q | | 9x-58=6x-34 | | 12a-9=15+12 | | 8*x+10+2x+4*(x+8)-6=2*(7x+18) | | 25(4/5)^x=10 | | 48+77+150+x=360 | | x-30=x-0.4 | | 22=-2(4v-5) | | 7^x+3=17 | | 3(2x-5)=4+33 | | 3(2x-5)=+33 | | 8x+2=2x+7 | | 2t—9=51 | | |6c-3|=5 | | 3x+5x=2x+4 | | 29=-6r-4r | | 3÷(x+1)=0.5 | | 2x+(x+3)x2=24 | | 5(q+5)=55 | | 1/2=3/8x | | 11-2p=2p+5+2p | | 21a^2=3a | | 3g-15+4g=-3g+175 | | 16/3=4v | | 3-4w=10w+10 | | 11x+2+5+10=180 | | 3x+x=412,00 | | 25t=25+5 | | 2(3x+7)=9x+10-3x+4 | | 170x-170=17(10x-10) |